175 research outputs found

    In Vivo Time-Lapse Imaging of Synaptic Takeover Associated with Naturally Occurring Synapse Elimination

    Get PDF
    AbstractDuring development, competition between axons causes permanent removal of synaptic connections, but the dynamics have not been directly observed. Using transgenic mice that express two spectral variants of fluorescent proteins in motor axons, we imaged competing axons at developing neuromuscular junctions in vivo. Typically, one axon withdrew progressively from postsynaptic sites and the competing axon extended axonal processes to occupy those sites. In rare instances when the remaining axon did not reoccupy a site, the postsynaptic receptors rapidly disappeared. Interestingly, the progress and outcome of competition was unpredictable. Moreover, the relative areas occupied by the competitors shifted in favor of one axon and then the other. These results show synaptic competition is not always monotonic and that one axon's contraction in synaptic area is associated with another axon's expansion

    Guided Proofreading of Automatic Segmentations for Connectomics

    Full text link
    Automatic cell image segmentation methods in connectomics produce merge and split errors, which require correction through proofreading. Previous research has identified the visual search for these errors as the bottleneck in interactive proofreading. To aid error correction, we develop two classifiers that automatically recommend candidate merges and splits to the user. These classifiers use a convolutional neural network (CNN) that has been trained with errors in automatic segmentations against expert-labeled ground truth. Our classifiers detect potentially-erroneous regions by considering a large context region around a segmentation boundary. Corrections can then be performed by a user with yes/no decisions, which reduces variation of information 7.5x faster than previous proofreading methods. We also present a fully-automatic mode that uses a probability threshold to make merge/split decisions. Extensive experiments using the automatic approach and comparing performance of novice and expert users demonstrate that our method performs favorably against state-of-the-art proofreading methods on different connectomics datasets.Comment: Supplemental material available at http://rhoana.org/guidedproofreading/supplemental.pd

    The Interscutularis Muscle Connectome

    Get PDF
    The complete connectional map (connectome) of a neural circuit is essential for understanding its structure and function. Such maps have only been obtained in Caenorhabditis elegans. As an attempt at solving mammalian circuits, we reconstructed the connectomes of six interscutularis muscles from adult transgenic mice expressing fluorescent proteins in all motor axons. The reconstruction revealed several organizational principles of the neuromuscular circuit. First, the connectomes demonstrate the anatomical basis of the graded tensions in the size principle. Second, they reveal a robust quantitative relationship between axonal caliber, length, and synapse number. Third, they permit a direct comparison of the same neuron on the left and right sides of the same vertebrate animal, and reveal significant structural variations among such neurons, which contrast with the stereotypy of identified neurons in invertebrates. Finally, the wiring length of axons is often longer than necessary, contrary to the widely held view that neural wiring length should be minimized. These results show that mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form. This variability may arise from the dominant role of synaptic competition in establishing the final circuit.National Institutes of Health (U.S.

    Nerve-independent formation of a topologically complex postsynaptic apparatus

    Get PDF
    As the mammalian neuromuscular junction matures, its acetylcholine receptor (AChR)–rich postsynaptic apparatus is transformed from an oval plaque into a pretzel-shaped array of branches that precisely mirrors the branching pattern of the motor nerve terminal. Although the nerve has been believed to direct postsynaptic maturation, we report here that myotubes cultured aneurally on matrix-coated substrates form elaborately branched AChR-rich domains remarkably similar to those seen in vivo. These domains share several characteristics with the mature postsynaptic apparatus, including colocalization of multiple postsynaptic markers, clustering of subjacent myonuclei, and dependence on the muscle-specific kinase and rapsyn for their formation. Time-lapse imaging showed that branched structures arise from plaques by formation and fusion of AChR-poor perforations through a series of steps mirroring that seen in vivo. Multiple fluorophore imaging showed that growth occurs by circumferential, asymmetric addition of AChRs. Analysis in vivo revealed similar patterns of AChR addition during normal development. These results reveal the sequence of steps by which a topologically complex domain forms on a cell and suggest an unexpected nerve-independent role for the postsynaptic cell in generating this topological complexity
    corecore